"

43 Drugs and Altered Consciousness

Learning Objectives

By the end of this section, you will be able to:

  • Describe the relationship between drug tolerance and withdraw
  • Identify the neurotransmitter systems impacted by various categories of drugs
  • Describe how different categories of drugs affect behaviour and experience

While we all experience altered states of consciousness in the form of sleep on a regular basis, some people use drugs and other substances that result in altered states of consciousness as well. This section will present information relating to the use of various psychoactive drugs and their influence on physical and psychological states. This will be followed by brief descriptions of the effects of some of the more well-known drugs commonly used today.

Drug Effects

Drugs exert their effects on both physical and psychological bodily functions. Physical dependence involves changes in normal bodily functions—the user will experience withdrawal from the drug upon cessation of use. In contrast, a person who has psychological dependence has an emotional, rather than physical, need for the drug and may use the drug to relieve psychological distress. Tolerance is linked to physiological dependence, and it occurs when a person requires more and more drug to achieve effects previously experienced at lower doses. Tolerance can cause the user to increase the amount of drug used to a dangerous level—even to the point of overdose and death.

Drug withdrawal includes a variety of negative symptoms experienced when drug use is discontinued. These symptoms usually are opposite of the effects of the drug. For example, withdrawal from sedative drugs often produces unpleasant arousal and agitation. In addition to withdrawal, many individuals who are diagnosed with substance use disorders will also develop tolerance to these substances. Psychological dependence, or drug craving, is a recent addition to the diagnostic criteria for substance use disorder in DSM-5. This is an important factor because we can develop tolerance and experience withdrawal from any number of drugs that we do not abuse. In other words, physical dependence in and of itself is of limited utility in determining whether or not someone has a substance use disorder.

Drug Categories

The effects of all psychoactive drugs occur through their interactions with our endogenous neurotransmitter systems. Many of these drugs, and their relationships, are shown in Table SC.2. As you have learned, drugs can act as agonists or antagonists of a given neurotransmitter system. An agonist facilitates the activity of a neurotransmitter system, and antagonists impede neurotransmitter activity.

Table SC.2 Drugs and Their Effects
Class of Drug Examples Effects on the Body Effects When Used Psychologically Addicting?
Stimulants Cocaine, amphetamines (including some ADHD medications such as Adderall), methamphetamines, MDMA (“Ecstasy” or “Molly”) Increased heart rate, blood pressure, body temperature Increased alertness, mild euphoria, decreased appetite in low doses. High doses increase agitation, paranoia, can cause hallucinations. Some can cause heightened sensitivity to physical stimuli. High doses of MDMA can cause brain toxicity and death. Yes
Sedative-Hypnotics (“Depressants”) Alcohol, barbiturates (e.g., secobarbital, pentobarbital), Benzodiazepines (e.g., Xanax) Decreased heart rate, blood pressure Low doses increase relaxation, decrease inhibitions. High doses can induce sleep, cause motor disturbance, memory loss, decreased respiratory function, and death. Yes
Opiates Opium, Heroin, Fentanyl, Morphine, Oxycodone, Vicoden, methadone, and other prescription pain relievers Decreased pain, pupil dilation, decreased gut motility, decreased respiratory function Pain relief, euphoria, sleepiness. High doses can cause death due to respiratory depression. Yes
Hallucinogens Marijuana, LSD, Peyote, mescaline, DMT, dissociative anesthetics including ketamine and PCP Increased heart rate and blood pressure that may dissipate over time Mild to intense perceptual changes with high variability in effects based on strain, method of ingestion, and individual differences Yes

Link to Learning

Mouse Party

The Genetic Science Learning Centre at the University of Utah, created an interactive (simplified) overview of the mechanism and effects of several common drugs. You can access and interact with Mouse Party here: https://learn.genetics.utah.edu/content/addiction/mouse/ Note that this activity requires the Flash Player plug-in. For individuals who cannot view this activity, we have created a walkthrough video to show each of the mice and the drug effects and mechanisms.

 

If the video above does not load, click here: https://youtu.be/DaLgWHfWzo4

Depressants

depressant is a drug that tends to suppress central nervous system activity (Figure SC.15). Some depressants include alcohol, barbiturates and benzodiazepines. These drugs share in common their ability to serve as agonists of the gamma-Aminobutyric acid (GABA) neurotransmitter system. Because GABA has a quieting effect on the brain, GABA agonists also have a quieting effect; these types of drugs are often prescribed to treat both anxiety and insomnia.

 

An illustration of a GABA-gated chloride channel in a cell membrane shows receptor sites for barbiturate, benzodiazepine, GABA, alcohol, and neurosteroids, as well as three negatively-charged chloride ions passing through the channel. Each drug type has a specific shape, such as triangular, rectangular or square, which corresponds to a similarly shaped receptor spot.
Figure SC.15 The GABA-gated chloride (Cl–) channel is embedded in the cell membrane of certain neurones. The channel has multiple receptor sites where alcohol, barbiturates, and benzodiazepines bind to exert their effects. The binding of these molecules opens the chloride channel, allowing negatively-charged chloride ions (Cl–) into the neurone’s cell body. Changing its charge in a negative direction pushes the neurone away from firing; thus, activating a GABA neurone has a quieting effect on the brain.

Ethanol, which we commonly refer to as alcohol, is in a class of psychoactive drugs known as depressants. Acute alcohol administration results in a variety of changes to consciousness. At rather low doses, alcohol use is associated with feelings of euphoria. As the dose increases, people report feeling sedated. Generally, alcohol is associated with decreases in reaction time and visual acuity, lowered levels of alertness, and reduction in behavioural control. With excessive alcohol use, a person might experience a complete loss of consciousness and/or difficulty remembering events that occurred during a period of intoxication (McKim & Hancock, 2013). In addition, if a pregnant woman consumes alcohol, her infant may be born with a cluster of birth defects and symptoms collectively called fetal alcohol spectrum disorder (FASD) or fetal alcohol syndrome (FAS). With repeated use of many central nervous system depressants, such as alcohol, a person becomes physically dependent upon the substance and will exhibit signs of both tolerance and withdrawal. Psychological dependence on these drugs is also possible. Therefore, the abuse potential of central nervous system depressants is relatively high. Drug withdrawal is usually an aversive experience, and it can be a life-threatening process in individuals who have a long history of very high doses of alcohol and/or barbiturates. This is of such concern that people who are trying to overcome addiction to these substances should only do so under medical supervision.

Stimulants

Stimulants are drugs that tend to increase overall levels of neural activity. Many of these drugs act as agonists of the dopamine neurotransmitter system. Dopamine activity is often associated with reward and craving; therefore, drugs that affect dopamine neurotransmission often have abuse liability. Drugs in this category include cocaine, amphetamines (including methamphetamine), cathinones (i.e., bath salts), MDMA (ecstasy), nicotine, and caffeine. Cocaine can be taken in multiple ways. While many users snort cocaine, intravenous injection and inhalation (smoking) are also common. The freebase version of cocaine, known as crack, is a potent, smokable version of the drug. Like many other stimulants, cocaine agonizes the dopamine neurotransmitter system by blocking the reuptake of dopamine in the neuronal synapse.

Methamphetamine

Methamphetamine in its smokable form, often called “crystal meth” due to its resemblance to rock crystal formations, is highly addictive. The smokable form reaches the brain very quickly to produce an intense euphoria that dissipates almost as fast as it arrives, prompting users to continuing taking the drug. Users often consume the drug every few hours across days-long binges called “runs,” in which the user forgoes food and sleep. In the wake of the opiate epidemic, many drug cartels in Mexico are shifting from producing heroin to producing highly potent but inexpensive forms of methamphetamine. The low cost coupled with lower risk of overdose than with opiate drugs is making crystal meth a popular choice among drug users today (NIDA, 2019). Using crystal meth poses a number of serious long-term health issues, including dental problems (often called “meth mouth”), skin abrasions caused by excessive scratching, memory loss, sleep problems, violent behaviour, paranoia, and hallucinations. Methamphetamine addiction produces an intense craving that is difficult to treat.

Amphetamines have a mechanism of action quite similar to cocaine in that they block the reuptake of dopamine in addition to stimulating its release (Figure SC.16). While amphetamines are often abused, they are also commonly prescribed to children diagnosed with attention deficit hyperactivity disorder (ADHD). It may seem counterintuitive that stimulant medications are prescribed to treat a disorder that involves hyperactivity, but the therapeutic effect comes from increases in neurotransmitter activity within certain areas of the brain associated with impulse control. These brain areas include the prefrontal cortex and basal ganglia.

 

An illustration of a presynaptic cell and a postsynaptic cell shows these cells’ interactions with cocaine and dopamine molecules. The presynaptic cell contains two cylinder-shaped channels, one on each side near where it faces the postsynaptic cell. The postsynaptic cell contains several receptors, side-by-side across the area that faces the presynaptic cell. In the space between the two cells, there are both cocaine and dopamine molecules. One of the cocaine molecules attaches to one of the presynaptic cell’s channels. This cocaine molecule is labeled “bound cocaine.” An X-shape is shown over the top of the bound cocaine and the channel to indicate that the cocaine does not enter the presynaptic cell. A dopamine molecule is shown inside of the presynaptic cell’s other channel. Arrows connect this dopamine molecule to several others inside of the presynaptic cell. More arrows connect to more dopamine molecules, tracing their paths from the channel into the presynaptic cell, and out into the space between the presynaptic cell and the postsynaptic cell. Arrows extend from two of the dopamine molecules in this in-between space to the postsynaptic cell’s receptors. Only the dopamine molecules are shown binding to the postsynaptic cell’s receptors.
Figure SC.16 As one of their mechanisms of action, cocaine and amphetamines block the reuptake of dopamine from the synapse into the presynaptic cell.

In recent years, methamphetamine (meth) use has become increasingly widespread. Methamphetamine is a type of amphetamine that can be made from ingredients that are readily available (e.g., medications containing pseudoephedrine, a compound found in many over-the-counter cold and flu remedies). Despite recent changes in laws designed to make obtaining pseudoephedrine more difficult, methamphetamine continues to be an easily accessible and relatively inexpensive drug option (Shukla, Crump, & Chrisco, 2012).

Stimulant users seek a euphoric high, feelings of intense elation and pleasure, especially in those users who take the drug via intravenous injection or smoking. MDMA (3.4-methelynedioxy-methamphetamine, commonly known as “ecstasy” or “Molly”) is a mild stimulant with perception-altering effects. It is typically consumed in pill form. Users experience increased energy, feelings of pleasure, and emotional warmth. Repeated use of these stimulants can have significant adverse consequences. Users can experience physical symptoms that include nausea, elevated blood pressure, and increased heart rate. In addition, these drugs can cause feelings of anxiety, hallucinations, and paranoia (Fiorentini et al., 2011). Normal brain functioning is altered after repeated use of these drugs. For example, repeated use can lead to overall depletion among the monoamine neurotransmitters (dopamine, norepinephrine, and serotonin). Depletion of certain neurotransmitters can lead to mood dysphoria, cognitive problems, and other factors. This can lead to people compulsively using stimulants such as cocaine and amphetamines, in part to try to reestablish the person’s physical and psychological pre-use baseline. (Jayanthi & Ramamoorthy, 2005; Rothman, Blough, & Baumann, 2007).

Caffeine is another stimulant drug. While it is probably the most commonly used drug in the world, the potency of this particular drug pales in comparison to the other stimulant drugs described in this section. Generally, people use caffeine to maintain increased levels of alertness and arousal. Caffeine is found in many common medicines (such as weight loss drugs), beverages, foods, and even cosmetics (Herman & Herman, 2013). While caffeine may have some indirect effects on dopamine neurotransmission, its primary mechanism of action involves antagonizing adenosine activity (Porkka-Heiskanen, 2011). Adenosine is a neurotransmitter that promotes sleep. Caffeine is an adenosine antagonist, so caffeine inhibits the adenosine receptors, thus decreasing sleepiness and promoting wakefulness.While caffeine is generally considered a relatively safe drug, high blood levels of caffeine can result in insomnia, agitation, muscle twitching, nausea, irregular heartbeat, and even death (Reissig, Strain, & Griffiths, 2009; Wolt, Ganetsky, & Babu, 2012). In 2012, Kromann and Nielson reported on a case study of a 40-year-old woman who suffered significant ill effects from her use of caffeine. The woman used caffeine in the past to boost her mood and to provide energy, but over the course of several years, she increased her caffeine consumption to the point that she was consuming three litres of soda each day. Although she had been taking a prescription antidepressant, her symptoms of depression continued to worsen and she began to suffer physically, displaying significant warning signs of cardiovascular disease and diabetes. Upon admission to an outpatient clinic for treatment of mood disorders, she met all of the diagnostic criteria for substance dependence and was advised to dramatically limit her caffeine intake. Once she was able to limit her use to less than 12 ounces of soda a day, both her mental and physical health gradually improved. Despite the prevalence of caffeine use and the large number of people who confess to suffering from caffeine addiction, this was the first published description of soda dependence appearing in scientific literature.

Nicotine is highly addictive, and the use of tobacco products is associated with increased risks of heart disease, stroke, and a variety of cancers. Nicotine exerts its effects through its interaction with acetylcholine receptors. Acetylcholine functions as a neurotransmitter in motor neurones. In the central nervous system, it plays a role in arousal and reward mechanisms. Nicotine is most commonly used in the form of tobacco products like cigarettes or chewing tobacco; therefore, there is a tremendous interest in developing effective smoking cessation techniques. To date, people have used a variety of nicotine replacement therapies in addition to various psychotherapeutic options in an attempt to discontinue their use of tobacco products. In general, smoking cessation programs may be effective in the short term, but it is unclear whether these effects persist (Cropley, Theadom, Pravettoni, & Webb, 2008; Levitt, Shaw, Wong, & Kaczorowski, 2007; Smedslund, Fisher, Boles, & Lichtenstein, 2004). Vaping as a means to deliver nicotine is becoming increasingly popular, especially among teens and young adults. Vaping uses battery-powered devices, sometimes called e-cigarettes, that deliver liquid nicotine and flavourings as a vapour. Originally reported as a safe alternative to the known cancer-causing agents found in cigarettes, vaping is now known to be very dangerous and has led to serious lung disease and death in users.

Opioids

An opioid is a category of drugs that includes heroin, morphine, methadone, and codeine. Opioids have analgesic properties; that is, they decrease pain. Humans have an endogenous opioid neurotransmitter system—the body makes small quantities of opioid compounds that bind to opioid receptors reducing pain and producing euphoria. Thus, opioid drugs, which mimic this endogenous painkilling mechanism, have an extremely high potential for abuse. Natural opioids, called opiates, are derivatives of opium, which is a naturally occurring compound found in the poppy plant. There are now several synthetic versions of opiate drugs (correctly called opioids) that have very potent painkilling effects, and they are often abused. For example, the National Institutes of Drug Abuse has sponsored research that suggests the misuse and abuse of the prescription pain killers hydrocodone and oxycodone are significant public health concerns (Maxwell, 2006). In 2013, the U.S. Food and Drug Administration recommended tighter controls on their medical use.Historically, heroin has been a major opioid drug of abuse (Figure SC.17). Heroin can be snorted, smoked, or injected intravenously. Heroin produces intense feelings of euphoria and pleasure, which are amplified when the heroin is injected intravenously. Following the initial “rush,” users experience 4–6 hours of “going on the nod,” alternating between conscious and semiconscious states. Heroin users often shoot the drug directly into their veins. Some people who have injected many times into their arms will show “track marks,” while other users will inject into areas between their fingers or between their toes, so as not to show obvious track marks and, like all abusers of intravenous drugs, have an increased risk for contraction of both tuberculosis and HIV.

 

Photograph A shows various paraphernalia spread out on a black surface. The items include a tourniquet, three syringes of varying widths, three cotton-balls, a tiny cooking vessel, a condom, a capsule of sterile water, and an alcohol swab. Photograph B shows a hand holding a spoon containing heroin tar above a small candle.
Figure SC.17 (a) Common paraphernalia for heroin preparation and use are shown here in a needle exchange kit. (b) Heroin is cooked on a spoon over a candle. (credit a: modification of work by Todd Huffman)

Aside from their utility as analgesic drugs, opioid-like compounds are often found in cough suppressants, anti-nausea, and anti-diarrhea medications. Given that withdrawal from a drug often involves an experience opposite to the effect of the drug, it should be no surprise that opioid withdrawal resembles a severe case of the flu. While opioid withdrawal can be extremely unpleasant, it is not life-threatening (Julien, 2005). Still, people experiencing opioid withdrawal may be given methadone to make withdrawal from the drug less difficult. Methadone is a synthetic opioid that is less euphorigenic than heroin and similar drugs. Methadone clinics help people who previously struggled with opioid addiction manage withdrawal symptoms through the use of methadone. Other drugs, including the opioid buprenorphine, have also been used to alleviate symptoms of opiate withdrawal.

Codeine is an opioid with relatively low potency. It is often prescribed for minor pain, and it is available over-the-counter in some other countries. Like all opioids, codeine does have abuse potential. In fact, abuse of prescription opioid medications is becoming a major concern worldwide (Aquina, Marques-Baptista, Bridgeman, & Merlin, 2009; Casati, Sedefov, & Pfeiffer-Gerschel, 2012).

Everyday Connection

The Opioid Crisis

Few people in Canada and the United States remain untouched by the recent opioid epidemic. It seems like everyone knows a friend, family member, or neighbour who has died of an overdose. Opioid addiction reached crisis levels in the United States such that by 2019, an average of 130 people died each day of an opioid overdose (NIDA, 2019). The crisis actually began in the 1990s, when pharmaceutical companies began mass-marketing pain-relieving opioid drugs like OxyContin with the promise (now known to be false) that they were non-addictive. Increased prescriptions led to greater rates of misuse, along with greater incidence of addiction, even among patients who used these drugs as prescribed. Physiologically, the body can become addicted to opiate drugs in less than a week, including when taken as prescribed. Withdrawal from opioids includes pain, which patients often misinterpret as pain caused by the problem that led to the original prescription, and which motivates patients to continue using the drugs. The FDA’s 2013 recommendation for tighter controls on opiate prescriptions left many patients addicted to prescription drugs like OxyContin unable to obtain legitimate prescriptions. This created a black market for the drug, where prices soared to $80 or more for a single pill. To prevent withdrawal, many people turned to cheaper heroin, which could be bought for $5 a dose or less. To keep heroin affordable, many dealers began adding more potent synthetic opioids including fentanyl and carfentanyl to increase the effects of heroin. These synthetic drugs are so potent that even small doses can cause overdose and death. Large-scale public health campaigns by the National Institutes of Health and the National Institute of Drug Abuse have led to recent declines in the opioid crisis. These initiatives include increasing access to treatment and recovery services, increasing access to overdose-reversal drugs like Naloxone, and implementing better public health monitoring systems (NIDA, 2019).

Hallucinogens

hallucinogen is one of a class of drugs that results in profound alterations in sensory and perceptual experiences (Figure SC.18). In some cases, users experience vivid visual hallucinations. It is also common for these types of drugs to cause hallucinations of body sensations (e.g., feeling as if you are a giant) and a skewed perception of the passage of time.

 

An illustration shows a colorful spiral pattern.
Figure SC.18 Psychedelic images like this are often associated with hallucinogenic compounds. (credit: modification of work by “new 1lluminati”/Flickr)

As a group, hallucinogens are incredibly varied in terms of the neurotransmitter systems they affect. Mescaline and LSD are serotonin agonists, and PCP (angel dust) and ketamine (an animal anesthetic) act as antagonists of the NMDA glutamate receptor. In general, these drugs are not thought to possess the same sort of abuse potential as other classes of drugs discussed in this section.

License

Icon for the Creative Commons Attribution 4.0 International License

Introduction to Psychology & Neuroscience (2nd Edition) Copyright © 2020 by Edited by Leanne Stevens, Jennifer Stamp, & Kevin LeBlanc is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.