"

Chapter Summary

5.1 Components and Structure

Modern scientists refer to the plasma membrane as the fluid mosaic model. A phospholipid bilayer comprises the plasma membrane, with hydrophobic, fatty acid tails in contact with each other. The membrane’s landscape is studded with proteins, some which span the membrane. Some of these proteins serve to transport materials into or out of the cell. Carbohydrates are attached to some of the proteins and lipids on the membrane’s outward-facing surface, forming complexes that function to identify the cell to other cells. The membrane’s fluid nature is due to temperature, fatty acid tail configuration (some kinked by double bonds), cholesterol presence embedded in the membrane, and the mosaic nature of the proteins and protein-carbohydrate combinations, which are not firmly fixed in place. Plasma membranes enclose and define the cells’ borders. Not static, they are dynamic and constantly in flux.

5.2 Passive Transport

The passive transport forms, diffusion and osmosis, move materials of small molecular weight across membranes. Substances diffuse from high to lower concentration areas, and this process continues until the substance evenly distributes itself in a system. In solutions containing more than one substance, each molecule type diffuses according to its own concentration gradient, independent of other substances diffusing. Many factors can affect the diffusion rate, such as concentration gradient, diffusing, particle sizes, and the system’s temperature.

In living systems, the plasma membrane mediates substances diffusing in and out of cells. Some materials diffuse readily through the membrane, but others are hindered and only can pass through due to specialized proteins such as channels and transporters. The chemistry of living things occurs in aqueous solutions, and balancing the concentrations of those solutions is an ongoing problem. In living systems, diffusing some substances would be slow or difficult without membrane proteins that facilitate transport.

5.3 Active Transport

The combined gradient that affects an ion includes its concentration gradient and its electrical gradient. A positive ion, for example, might diffuse into a new area, down its concentration gradient, but if it is diffusing into an area of net positive charge, its electrical gradient hampers its diffusion. When dealing with ions in aqueous solutions, one must consider electrochemical and concentration gradient combinations, rather than just the concentration gradient alone. Living cells need certain substances that exist inside the cell in concentrations greater than they exist in the extracellular space. Moving substances up their electrochemical gradients requires energy from the cell. Active transport uses energy stored in ATP to fuel this transport. Active transport of small molecular-sized materials uses integral proteins in the cell membrane to move the materials. These proteins are analogous to pumps. Some pumps, which carry out primary active transport, couple directly with ATP to drive their action. In co-transport (or secondary active transport), energy from primary transport can move another substance into the cell and up its concentration gradient.

5.4 Bulk Transport

Active transport methods require directly using ATP to fuel the transport. In a process scientists call phagocytosis, other cells can engulf large particles, such as macromolecules, cell parts, or whole cells. In phagocytosis, a portion of the membrane invaginates and flows around the particle, eventually pinching off and leaving the particle entirely enclosed by a plasma membrane’s envelope. The cell breaks down vesicle contents, with the particles either used as food or dispatched. Pinocytosis is a similar process on a smaller scale. The plasma membrane invaginates and pinches off, producing a small envelope of fluid from outside the cell. Pinocytosis imports substances that the cell needs from the extracellular fluid. The cell expels waste in a similar but reverse manner. It pushes a membranous vacuole to the plasma membrane, allowing the vacuole to fuse with the membrane and incorporate itself into the membrane structure, releasing its contents to the exterior.

Review Video

Cell membrane structure and function from Bioman:

Membrane transport from Crash Course Biology:

License

Icon for the Creative Commons Attribution 4.0 International License

Biology 2e for Biol 111 and Biol 112 Copyright © 2023 by Mary Ann Clark; Jung Choi; and Matthew Douglas is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.