"

3.1 Synthesis of Biological Macromolecules

Key Concepts

By the end of this section, you will be able to do the following:

  • Understand macromolecule synthesis
  • Explain dehydration (or condensation) and hydrolysis reactions

As you’ve learned, biological macromolecules are large molecules, necessary for life, that are built from smaller organic molecules. There are four major biological macromolecule classes (carbohydrates, lipids, proteins, and nucleic acids). Each is an important cell component and performs a wide array of functions. Combined, these molecules make up the majority of a cell’s dry mass (recall that water makes up the majority of its complete mass). Biological macromolecules are organic, meaning they contain carbon. In addition, they may contain hydrogen, oxygen, nitrogen, and additional minor elements.

Dehydration Synthesis

Most macromolecules are made from single subunits, or building blocks, called monomers. The monomers combine with each other using covalent bonds to form larger molecules known as polymers. In doing so, monomers release water molecules as byproducts. This type of reaction is dehydration synthesis, which means “to put together while losing water.”

 

Shown is the reaction of two glucose monomers to form maltose. When maltose is formed, a water molecules is released. The components of the linkage are upper case O upper case H from one glucose molecule combining with one upper case H from the second glucose molecule.
Figure 3.2 In the dehydration synthesis reaction above, two glucose molecules link to form the disaccharide maltose. In the process, it forms a water molecule.

In a dehydration synthesis reaction (Figure 3.2), the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a water molecule. At the same time, the monomers share electrons and form covalent bonds. As additional monomers join, this chain of repeating monomers forms a polymer. Different monomer types can combine in many configurations, giving rise to a diverse group of macromolecules. Even one kind of monomer can combine in a variety of ways to form several different polymers. For example, glucose monomers are the constituents of starch, glycogen, and cellulose.

Hydrolysis

Polymers break down into monomers during hydrolysis. A chemical reaction occurs when inserting a water molecule across the bond. Breaking a covalent bond with this water molecule in the compound achieves this (Figure 3.3). During these reactions, the polymer breaks into two components: one part gains a hydrogen atom (H+) and the other gains a hydroxyl molecule (OH–) from a split water molecule.

 

Shown is the breakdown of maltose to form two glucose monomers. Water is a reactant. The water molecule, upper case H subscript 2 baseline upper case O, breaks apart, with upper O upper H obtained by one of the glucose molecules, and upper H obtained by the second glucose molecule.
Figure 3.3 In the hydrolysis reaction here, the disaccharide maltose breaks down to form two glucose monomers by adding a water molecule. Note that this reaction is the reverse of the synthesis reaction in Figure 3.2.

Dehydration and hydrolysis reactions are catalyzed, or “sped up,” by specific enzymes; dehydration reactions involve the formation of new bonds, requiring energy, while hydrolysis reactions break bonds and release energy. These reactions are similar for most macromolecules, but each monomer and polymer reaction is specific for its class. For example, catalytic enzymes in the digestive system hydrolyze or break down the food we ingest into smaller molecules. This allows cells in our body to easily absorb nutrients in the intestine. A specific enzyme breaks down each macromolecule. For instance, amylase, sucrase, lactase, or maltase break down carbohydrates. Enzymes called proteases, such as pepsin and peptidase, and hydrochloric acid break down proteins. Lipases break down lipids. These broken down macromolecules provide energy for cellular activities.

Link to Learning

Watch this video to see visual representations of dehydration synthesis and hydrolysis.

License

Icon for the Creative Commons Attribution 4.0 International License

Biology 2e for Biol 111 and Biol 112 Copyright © 2023 by Mary Ann Clark; Jung Choi; and Matthew Douglas is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.